Испытание запорной арматуры

1. ОБЩИЕ
ПОЛОЖЕНИЯ

СССР

РУКОВОДЯЩИЙ ДОКУМЕНТ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ТИПОВАЯ МЕТОДИКА ИСПЫТАНИЙ ТРУБОПРОВОДНОЙ
АРМАТУРЫ НА ПРОЧНОСТЬ И ПЛОТНОСТЬ МАТЕРИАЛА
ДЕТАЛЕЙ И СВАРНЫХ ШВОВ

РД 26-07-263-86

УТВЕРЖДАЮ

Главный инженер
организации п/я А-3398

_________ С.Ю. Бобович

24.10.86 г.

РУКОВОДЯЩИЙ ДОКУМЕНТ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ.

ТИПОВАЯ МЕТОДИКА ИСПЫТАНИЙ
ТРУБОПРОВОДНОЙ АРМАТУРЫ НА
ПРОЧНОСТЬ И ПЛОТНОСТЬ
МАТЕРИАЛА ДЕТАЛЕЙ И СВАРНЫХ
ШВОВ

РД 26-07-263-86

Вводится впервые

Письмом организации п/я А-3398 от «31» 10 1986 г. НТ-4/12-1573 срок введения установлен с «01» 01 1987

Настоящие методические указания распространяются на трубопроводную арматуру общепромышленного назначения (включая арматуру для АЭС), а также пневмо- и гидропривода (в дальнейшем арматура) и устанавливает типовую методику испытаний на прочность и плотность материала деталей, сварных швов и арматуры в сборе, работающих под давлением.

1.1. Основными рабочими средами при испытаниях на прочность и плотность материала деталей, сварных швов и арматуры в сборе являются вода и воздух.

1.2. Вода для гидравлических испытаний должна соответствовать требованиям ГОСТ 2674-82 с температурой не ниже +5° С и не выше +40° С.

1.3. Воздух для пневматических испытаний должен соответствовать требованиям ОСТ 92-137-78.

1.4. Арматура перед проведением испытаний на прочность и плотность должна быть тщательно промыта, очищена от песка, стружки и прочих загрязнений, при испытании воздухом до полного удаления влаги из внутренних полостей.

1.5. При проведении гидравлических испытаний на прочность и плотность материала деталей сварных швов и арматуры в сборе необходимо при заполнении водой вытеснить из испытываемых полостей воздух.

Допускается испытание на прочность и плотность материала деталей, сварных швов и арматуры в сборе проводить одновременно в соответствии с разработанной на предприятии технологической документацией на оборудовании, обеспечивающем надежный контроль.

2. ПОРЯДОК ПРОВЕДЕНИЯ ИСПЫТАНИЙ НА ПРОЧНОСТЬ МАТЕРИАЛА ДЕТАЛЕЙ, СВАРНЫХ ШВОВ И ТРУБОПРОВОДНОЙ АРМАТУРЫ В СБОРЕ

2.1. Общие требования

2.1.1. До проведения испытаний арматуры в сборе все детали и сборки, работающие под давлением должны быть испытаны на прочность Рпр в соответствии с указаниями на чертежах.

Допускается проведение испытаний на прочность деталей и сварных швов, работающих под давлением, на арматуре в сборе с соблюдением требований по технике безопасности.

2.1.2. Величины пробных давлений Рпр для деталей, сварных швов и арматуры в сборе промышленного назначения устанавливаются в соответствии с ГОСТ 356-80.

2.1.3. Детали, сварные швы и арматура в сборе для АЭС подвергаются испытаниям на прочность в соответствии с «Правилами АЭС». Величина Рпр должна соответствовать указаниям в чертежах и технических условиях (ТУ).

2.2. Гидравлические испытания трубопроводной арматуры на прочность материала и сварных швов

2.2.1. Гидравлические испытания на прочность материала деталей, сварных швов и арматуры в сборе производятся:

— для запорной и регулирующей арматуры путем подачи давления воды (Рпр) в корпус через один из патрубков при заглушенном другом и открытом положении затвора;

— для обратных клапанов и захлопок путем подачи воды (Рпр) в один патрубок под запорный орган и заглушенном другом патрубке;

— для предохранительных клапанов и регуляторов давления путем подачи давления воды (Рпр) попеременно во входной и выходной патрубок в соответствии с указаниями в чертежах и ТУ;

— для гидро и пневмоприводов путем подачи давления воды (Рпр) в рабочие полости (полость) в соответствии с указаниями чертежей и ТУ.

Допускается проводить испытания на прочность кроме воды другими средами по согласованию с заказчиком и с соблюдением требований по технике безопасности.

2.2.2. Измерение давления должно производиться по двум поверенным манометрам (класс точности не ниже 1,5), один из которых должен быть контрольным. Давление должно повышаться плавно с выдержками и проверками плотности соединений и видимых деформаций при промежуточных и рабочих давлениях. Количество остановок и величины промежуточных давлений устанавливаются инструкцией, разрабатываемой предприятием. При этом, если рабочее давление превышает 15 кгс/см2, обязательно должна проводиться проверка при промежуточном давлении, равном половине рабочего, а при рабочем давлении свыше 100 кгс/см2 остановки и проверки проводятся через каждые 50 кгс/см2.

2.2.3. Выдержка при установившемся давлении производится в течении времени необходимого для тщательного осмотра по принятой на заводе-изготовителе технологии испытаний. После установленной выдержки производится плавное снятие давления и последующий внешний осмотр.

2.2.4. В случае появления при гидравлических испытаниях на прочность поломок, трещин, остаточных деформаций в виде выпучивания, увеличения диаметров и других дефектов, определяемых визуально, арматура считается невыдержавшей указанные испытания.

Допускается проводить испытания на прочность воздухов при условии соблюдения требований по технике безопасности.

2.2.5. Детали, сварные швы и арматура в сборе для АЭС должна подвергаться гидравлическому испытанию на прочность в соответствии с требованиями «Правил АЭС».

3. ПОРЯДОК ПРОВЕДЕНИЯ ИСПЫТАНИЙ НА ПЛОТНОСТЬ МАТЕРИАЛА ДЕТАЛЕЙ, СВАРНЫХ ШВОВ И ТРУБОПРОВОДНОЙ АРМАТУРЫ В СБОРЕ

3.1. Общие требования

3.1.1. Испытания на плотность материала деталей, сварных швов и трубопроводной арматуры в сборе проводятся после испытаний на прочность.

3.1.2. Детали, сварные швы и арматура в сборе, работающие на жидких средах, подвергаются испытаниям на плотность материала водой, а на газообразных, паре, жидких токсичных и взрывоопасных средах – воздухом.

Допускается производить испытание на плотность материала деталей, сварных швов и арматуры в сборе, работающей на жидких средах, воздухом с соблюдением требований по технике безопасности.

Допускается совмещать испытание материала деталей, сварных швов и арматуры в сборе на прочность и плотность.

3.2. Гидравлические испытания на плотность материала деталей, сварных швов и арматуры в сборе.

3.2.1. Гидравлические испытания на плотность материала деталей, сварных швов и арматуры в сборе производится при плавном и постепенном снижении давления воды от Рпр до Рр.

3.2.2. При испытаниях на плотность детали, сварные швы и арматура в сборе выдерживаются в течение времени, необходимого для тщательного осмотра по принятой на заводе-изготовителе технологии испытаний.

3.2.3. Направление подачи среды производить в соответствии с указаниями в чертежах и ТУ.

3.2.4. Детали, сварные швы и арматура в сборе считается выдержавшей испытания, если в процессе испытаний не наблюдалось течи или «отпотевания» через материал деталей.

Допускается гидравлические испытания на плотность материала деталей и сварных швов одновременно с гидравлическими испытаниями арматуры в сборе.

3.3. Пневматические испытания на плотность материала деталей, сварных швов и арматуры в сборе

3.3.1. При проведении пневматических испытаний на плотность материала деталей, сварных швов и арматуры в сборе во внутренние полости, работающие под давлением, подается воздух давлением (Рр) в соответствии с указаниями на чертежах и ТУ.

3.3.2. При испытаниях на плотность материала деталей, сварных швов и арматуры в сборе продолжительность выдержки при установившемся рабочем давлении составляет: не менее 2 мин для арматуры до Ду 100 мм, 3 мин – для Ду 100 … 300 мм и не менее 5 мин – для Ду свыше 300 мм.

3.3.3. Направление подачи воздуха производится в соответствии с указаниями в чертежах и ТУ.

3.3.4. При испытании воздухом контроль плотности материала деталей и сварных швов проводится пузырьковым методом (погружением в воду) или методом обмыливания в соответствии с РДП 26-52-81.

Допускается для проведения испытаний на плотность арматуры воздухом применение других методов контроля, приведенных в приложении 1 РДП 26-52-81.

3.3.5. Арматура считается выдержавшей испытания, если нарушения герметичности (появление пузырьков воздуха) не обнаружено.

3.3.6. Наличие неотрывающихся пузырьков при контроле в ванне с водой или нелопающихся пузырьков при контроле обмазыванием мыльной пеной не считается браковочным признаком.

3.3.7. Арматуру на Ру до 6,4 МПа (64 кгс/см2) допускается испытывать плотность материала деталей сварных швов и изделий в сборе воздухом давлением 0,6 МПа (6 кгс/см2).

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1. Испытания трубопроводной арматуры на плотность материала деталей и сварных швов следует проводить с использованием защитных бронеустройств.

При невозможности использования защитных устройств (например, при испытании изделий больших размеров) допускается проведение испытаний на открытых площадках, при условии удаления людей на безопасные расстояния или в безопасные места (укрытия, бункеры и т.п.).

4.2. Место испытания должно быть огорожено, вывешены предупредительные надписи у мест возможного появления посторонних лиц.

4.3. Не допускается устранение дефектов в арматуре, находящейся под давлением.

4.4. Запрещается обстукивание или какие-либо удары по корпусу арматуры, находящейся под давлением.

4.5. Контроль за состоянием воздушной среды должен проводиться с учетом требований ГОСТ 12.1.005-76.

4.6. Допускаемый уровень шума не должен превышать требований ГОСТ 12.1.003-83.

4.7. При проведении пневматических испытаний арматуры должны применяться следующие средства индивидуальной защиты:

— средства защиты рук (рукавицы по ГОСТ 12.4.010-75 для защиты от воды и механических воздействий);

— средства защиты органов слуха (противошумные наушники и вкладыши);

— средства защиты глаз (очки защитные по ГОСТ 12.4.003-80).

4.8. Средства индивидуальной защиты должны соответствовать требованиям ГОСТ 12.4.011-75.

4.9. Средства индивидуальной защиты работающих должны подвергаться периодическим контрольным осмотрам и проверкам в сроки, установленные НТД.

4.10. Контроль электробезопасности следует производить в соответствии с требованиями, которые устанавливают «Правила технической эксплуатации электроустановок потребителей» и «Правила техники безопасности при эксплуатации электроустановок потребителей», утвержденные Госэнергонадзором СССР.

4.11. Светотехнические изделия должны соответствовать требованиям ГОСТ 12.2.001.13-75.

Руководитель предприятия п/я Г-4745

С.И. Косых

Главный инженер

Б.И. Орехов

Главный инженер предприятия п/я А-7899

М.И. Власов

Заместитель руководителя предприятия п/я А-7899

Ю.И. Тарасьев

Заместитель главного инженера предприятия п/я Г-4745

В.Н. Конев

Заведующий отделом 161

Р.И. Хасанов

Заведующий отделом 159

В.К. Полюков

Руководитель темы

А.С. Каранов

Исполнитель

А.Г. Соломоник

Классификация газовой арматуры.

По назначению существующие виды газовой арматуры подразделяются:

  • на запорную арматуру — для периодических герметичных отключений отдельных участков газопровода, аппаратуры и приборов;
  • предохранительную арматуру — для предупреждения возможности повышения давления газа сверх установленных пределов;
  • арматуру обратного действия — для предотвращения движения газа в обратном направлении;
  • аварийную и отсечную арматуру — для автоматического прекращения движения газа к аварийному участку при нарушении заданного режима.

При выборе газового оборудования и арматуры необходимо руководствоваться действующими ГОСТ и СП.

Ценные сведения содержатся в материалах научно-исследова- тельекого центра промышленного газового оборудования «Газовик» (НИЦ ПГО «Газовик»), который занимается сбором, анализом, проверкой достоверности информации о степени качества, надежности, конкурентоспособности и безопасности продукции промышленного газового оборудования.

Вся арматура, применяемая в газовом хозяйстве, стандартизирована. По принятому условному обозначению шифр каждого изделия арматуры состоит из четырех частей. На первом месте стоит номер, обозначающий вид арматуры (таблица ниже).

Условные обозначения материалов корпуса арматуры

Материал корпуса

Обозначение

материала

Материал корпуса

Обозначение

материала

Сталь углеродистая

с

Латунь и бронза

б

Сталь кислотостойкая и нержавеющая

нж

Винипласт

вп

Чугун серый

ч

Сталь легированная

лс

Чугун ковкий

кч

Алюминий

а

На третьем — порядковый номер изделия. На четвертом — условное обозначение материала уплотнительных колец: б — бронза или латунь; нж — нержавеющая сталь; р — резина; э — эбонит; бт — баббит; бк — в корпусе и на затворе нет специальных уплотнительных колец.

Например, обозначение крана ПбЮбк расшифровывается так:

11 — вид арматуры (кран), б — материал корпуса (латунь), 10 — порядковый номер изделия, бк — тип уплотнения (без колец).

Большинство видов арматуры состоит из запорного или дроссельного устройства. Эти устройства представляют собой закрытый крышкой корпус, внутри которого перемещается затвор.

Перемещение затвора внутри корпуса относительно его седел изменяет площадь отверстия для прохода газа, что сопровождается изменением гидравлического сопротивления.

В запорных устройствах поверхности затвора и седла, соприкасающиеся во время отключения частей газопровода, называют уплотнительными. В дроссельных устройствах поверхности затвора и седла, образующие регулируемый проход для газа, называют дроссельными.

Запорная арматура.

К запорной арматуре относят различные устройства, предназначенные для герметичного отключения отдельных участков газопровода. Они должны обеспечивать герметичность отключения, быстроту открытия и закрытия, удобство в обслуживании и малое гидравлическое сопротивление.

В качестве запорной арматуры на газопроводах применяют задвижки, краны, вентили.

Наиболее распространенный вид запорной арматуры — задвижки (рисунок ниже), в которых поток газа или полное его прекращение регулируют изменением положения затвора вдоль уплотняющих поверхностей. Это достигается вращением маховика. Шпиндель может быть выдвижным или невыдвижным. Невыдвижной шпиндель при вращении маховика перемещается вокруг своей оси вместе с маховиком. В зависимости от того, в какую сторону вращается маховик, нарезная втулка затвора перемещается по резьбе на нижней части шпинделя вниз или вверх и соответственно опускает или поднимает затвор задвижки. Задвижки с выдвижным шпинделем обеспечивают перемещение шпинделя и связанного с ним затвора путем вращения резьбовой втулки, закрепленной в центре маховика.

Для газопроводов давлением до 0,6 МПа используют задвижки из серого чугуна, а для газопроводов давлением более 0,6 МПа — из стали.

Затворы задвижек могут быть параллельными и клиновыми. У параллельных затворов уплотнительные поверхности расположены параллельно, между ними находится распорный клин.

Задвижки

а — параллельная с вьадвижным шпинделем: 1 — корпус; 2- запорные диски; 3 — клин; 4 — шпиндель; 5 — маховик; 6 — сальниковая набивка; 7 — уплотнительные поверхности корпуса; б — клиновая с невыдвижным шпинделем: 1 — клин; 2- крышка; 3 — втулка; 4 — гайка; J — маховик; 6 — сальник; 7 — буртик; 8 — шпиндель

При закрытии задвижки клин упирается в дно задвижки и раздвигает диски, которые своими уплотнительными поверхностями создают необходимую плотность. В клиновых затворах боковые поверхности затвора расположены не параллельно, а наклонно. Причем эти задвижки могут быть со сплошным затвором и затвором, состоящим из двух дисков. На подземных газопроводах целесообразно устанавливать параллельные задвижки.

Однако задвижки не всегда обеспечивают герметичность отключения, так как часто уплотнительные поверхности и дно задвижки загрязняются. Кроме того, при эксплуатации задвижек с неполностью открытым затвором диски истираются и приходят в негодность.

Все отремонтированные и вновь устанавливаемые задвижки необходимо проверять на плотность керосином. Для этого задвижку следует установить в горизонтальное положение и залить сверху керосин, с другой стороны затвор окрашивают мелом. Если задвижка плотная, то на затворе не будет керосиновых пятен.

На подземных газопроводах задвижки монтируют в специальных колодцах (рисунок ниже) из сборного железобетона или красного кирпича. Перекрытие колодца должно быть съемным для удобства его разборки при производстве ремонтных работ.

Устройство газовых колодцев

а — установка задвижки в колодце: 1 — футляр; 2 — задвижка; 3 — ковер; 4 — люк; 5 — линзовый компенсатор; 6 — газопровод; б -устройство малогабаритного колодца: 1 — отвод; 2 — кран; 3 — прокладка; 4 — стенка колодца

Колодцы имеют люки, которые легко открываются для осмотра и производства ремонтных работ. На проезжей части дороги люки устанавливают на уровне дорожного покрытия, а на незамощенных проездах — выше уровня земли на 5 см с устройством вокруг люков отмостки диаметром 1 м. Там, где возможно, рекомендуется управление задвижкой вывести под ковер.

В местах пересечения газопроводами стенок колодца устанавливают футляры, которые для плотности заделывают битумом. Колодцы должны быть водонепроницаемыми. Эффективное средство против проникновения грунтовых вод — гидроизоляция стенок колодцев. На случай проникновения воды в колодцах устраивают специальные приямки для ее сбора и удаления.

На газопроводах диаметром до 100 мм при транспортировании осушенного газа устраивают малогабаритные колодцы (рисунок выше) с установкой арматуры в верхней части, что обеспечивает обслуживание арматуры с поверхности земли. В таких колодцах вместо задвижек устанавливают краны.

В кранах с принудительной смазкой (рисунок ниже) герметизация достигается за счет введения между уплотняющими поверхностями специальной консистентной смазки под давлением. Заправленная в пустотелый канал верхней части пробки смазка завинчиванием болта нагнетается по каналам в зазор между корпусом и пробкой. Пробка несколько приподнимается вверх, увеличивая зазор и обеспечивая легкость поворота, шариковый клапан и латунная прокладка предотвращают выдавливание смазки и проникновение газа наружу.

Конденсатосборники

а — высокого давления; б — низкого давления; 1 — кожух; 2 — внутренняя трубка; 3 — контакт; 4 — контргайка; 5 — кран; 6 — ковер; 7 — пробка; 8 — подушка под ковер железобетонная; 9 — электрод заземления; 10 — корпус конденсатосборника; 11 — газопровод; 12 — прокладка; 13 — муфта; 14 — стояк

В зависимости от влажности транспортируемого газа конденсатосборники могут быть большей емкости — для влажного газа и меньшей — для сухого газа. В зависимости от величины давления газа их разделяют на конденсатосборники низкого, среднего и высокого давлений.

Конденсатосборник низкого давления представляет собой емкость, снабженную дюймовой трубкой, которая выведена под ковер и заканчивается муфтой и пробкой. Через трубку удаляют конденсат, продувают газопровод и замеряют давление газа.

Конденсатосборники среднего и высокого давлений по конструкции несколько отличаются от конденсатосборников низкого давления. В них имеется дополнительная защитная трубка, а также кран на внутреннем стояке. Отверстие в верхней части стояка служит для выравнивания давления газа в стояке и футляре. Если бы отверстия не было, то конденсат под давлением газа постоянно заполнял бы стояк. При пониженных температурах возможны замерзание конденсата и разрыв стояков.

Под действием давления газа происходит автоматическая откачка конденсата. При закрытом кране газ оказывает противодействие на конденсат, который под действием своей массы опускается вниз. При открывании крана противодействие прекращается и конденсат выходит на поверхность.

Установка компенсаторов

а — линзового с задвижкой; б — резинотканевого; 1 — нижний кожух; 2 — верхний кожух; 3 — штифт; 4 — муфта; 5 — насадка; 6 — колпак; 7 — ковер малый; 8 — подушка под ковер; 9 — труба водогазопроводная усиленная; 10 — фланец приварной; 11 — задвижка; 12, 14 — прокладки; 13 — компенсатор двухлинзовый

Ввиду того что в колодцах очень часто находится вода, гайки и стяжные болты ржавеют, поэтому работа с ними затрудняется, а в отдельных случаях эксплуатационный персонал оставляет стяжные болты на линзовых компенсаторах, не свертывая гайки. Линзовый компенсатор перестает выполнять свою функцию, поэтому новые конструкции компенсаторов не предусматривают стяжных болтов. При ремонтах применяют струбцину для сжатия компенсаторов.

В связи с тем что компенсаторы выполнены из тонкостенной стали толщиной 3-5 мм, они не могут быть равнопрочны трубе. Ограниченность давления — основной недостаток линзовых компенсаторов. Для увеличения допустимого давления компенсаторы изготовляются из более прочной стали, с большим количеством волн, но меньшей высоты.

Существуют компенсаторы, выполненные из гнутых, обычно цельнотянутых труб (П-образные и лирообразные). Основной недостаток таких компенсаторов — большие габариты. Это ограничивает их применение на трубопроводах больших диаметров. В практике газоснабжения гнутые компенсаторы распространения не получили и совершенно не применяются в качестве монтажных компенсаторов при установке задвижек.

Большим достоинством обладают резинотканевые компенсаторы (рисунок выше). Они способны воспринимать деформации не только в продольном, но и в поперечном направлениях. Это позволяет использовать их для газопроводов, прокладываемых на территориях горных выработок и в сейсмоопасных районах.

Виды и назначение запорной арматуры

Назначение и функции запорной арматуры

Изделия запорной арматуры относятся к специальному типу изделий для трубопроводных магистралей, назначение которых заключается в оперативном регулировании скорости потока рабочего носителя для обеспечения заданных параметров технологического процесса. Действие запорной арматуры направлено на закрытие, открытие, смену направления и скорости движения рабочего газа/жидкости. Кроме того, к запорной арматуре следует отнести спускные и контрольные изделия, служащие для сброса носителя из трубопроводных систем, технологических аппаратов, и подачи носителя в контрольно-измерительные приборы.

Выбор материалов, из которых изготавливаются данные детали, в настоящее время достаточно широк:

  • металлы (титан, алюминий);
  • сплавы (чугун, сталь, бронза);
  • полимерные и синтетические материалы, например, поливинилиденфторид (ПВДФ), хлорированный поливинилхлорид (ХПВХ), полиэтилен (ПЭ), полипропилен (ПП).

При выборе запорного изделия руководствуются следующими техническими характеристиками: присоединительный диаметр, назначение и материал, из которого изготавливается корпус и рабочая часть трубопровода, скорость закрытия. Специальные требования: продолжительные сроки службы, высокая прочность, надёжность, безопасность, коррозионная устойчивость материала к рабочей среде, герметичность, простота монтажа и удобство эксплуатации.

Следует отметить, что рабочая среда трубопровода достаточно быстро повреждает изделия запорной арматуры, происходит истирание уплотнительных элементов, износ, коррозионные процессы, поэтому необходимо своевременно проводить технический контроль оборудования, промывку систем магистралей, ремонт или замену изделия.

В зависимости от назначения в составе технического объекта запорная арматура делится на категории:

  • промышленная (общепромышленная, специальная) – используется в производствах различного рода деятельности, в том числе народного хозяйства;
  • судовая – эксплуатируется в заданных специфических условиях морского и речного транспорта;
  • сантехническая – трубопроводная арматура бытового назначения, применяется в газовых плитах, колонках, ванных, котлах и т.д.;
  • изготовленная по спецзаказу – разрабатывается, изготавливается и эксплуатируется в соответствии с особыми заданными техническими требованиями, например, в уникальных, экспериментальных промышленных объектах.

Функции, выполняемые данным типом арматуры обширны: регулирующая, распределительно-смесительная, предохранительная, защитная, запорная, фазоразделительная.

В данной статье рассмотрим виды запорной арматуры, действие которой направлено на изменение площади поперечного сечения трубопровода для регулирования скорости потока носителя или полной его остановки.

Виды запорной арматуры

Рассматриваемый вид изделий обладает рядом преимуществ: простота конструкции, широкий диапазон условий эксплуатации, небольшая строительная длина, малое гидравлическое сопротивление, что особенно важно при их применении в трубопроводных магистралях с высокой скоростью рабочего носителя. Недостатки задвижек определяются их конструкцией: достаточно большое время, затрачиваемое на закрытие или открытие затворного элемента, износ уплотнительных деталей, сложность в техническом обслуживании.

Отечественная промышленность выпускает задвижки с не выдвижным штоком и с выдвижным шпинделем. Устанавливаются задвижки независимо от направления движения потока в трубопроводе, так как их конструкция симметрична. Выдерживают рабочие давления от 2 до 200 атмосфер, присоединительный диаметр варьируется от 8 мм до 2 м.

В вентиле рабочий элемент расположен на шпинделе, который совершает возвратно-поступательные движения от вращательных движений маховика. Движение шпинделя может осуществляться автоматически при помощи сервоприводов и вручную.

Данные изделия относятся к промышленной категории и наиболее часто встречаются в бытовых объектах жилищно-коммунального хозяйства. Самый распространенный тип вентиля – проходной, размещаемый на прямых участках магистралей. Одним из недостатков данного вида арматуры, кроме прямоточных вентилей, является большое гидравлического сопротивление, что ограничивает их применение в специальных технических объектах. Преимущества вентилей заключается в небольшой стоимости, доступности, надежности, легкости ремонта и технического обслуживания при эксплуатации.

Кран шаровой запорный

Работа осуществляется в крайних режимах «закрытие» и «открытие». Его основная функция направлена на перекрытие движения рабочего потока. Достоинства, недостатки и условия эксплуатации определяются материалом, из которого изготовлен кран. Например, пластиковые краны ПП, ПЭ устойчивы к воздействию агрессивных сред, но подвергаются разрушительному действию механических примесей рабочей среды. Краны из нержавеющей стали выдерживают высокие рабочие давления и температуры, но с точки зрения бытового использования имеют значительную стоимость.

Клапаны (обратные) относятся к защитной трубопроводной арматуре, функционально предназначены для предотвращения обратного хода потока рабочего носителя в технологической схеме. Пропуская рабочую среду в одном направлении, клапаны не дают возвратного хода жидкости или газа.

С их помощью осуществляется защита различного производственного оборудования (насосы, резервуары, аппараты и др.), а также исключается поврежденный участок трубопровода при течах рабочего носителя из общего технологического процесса, что крайне важно при возникновении аварийной ситуации.

Существуют клапаны с конструкцией запорного элемента шарообразной формы или в виде конуса, перемещение которого происходит в направлении, параллельном движению носителя. Поток, проходящий через рабочее окно клапана, прижимает запорный элемент к основанию устройства, что прекращает его движение в обратном направлении. Клапаны обратного типа изготавливают как встроенные в состав узлов и агрегатов, так и в самостоятельном виде. Как правило, обратные клапаны монтируются на горизонтальных прямых участках магистралей по направлению рабочего потока.

Клапаны, имея сравнительно простую конструкцию, тем не менее, обеспечивают надежность и герметичность перекрытия рабочего потока, благодаря чему широко используются для газообразных и жидких рабочих сред. Применяются в широком диапазоне давлений (от 5·10 -6 до 2000 атм.) и рабочих температур (от минус 200 до плюс 600°С). Подходят для трубопроводных конструкций относительно небольших диаметров.

Устройство затвора разработано таким образом, что запирающий элемент проворачивается вокруг оси, на которой он расположен. Наиболее распространенная разновидность данного устройства с дисковым затвором – «Баттерфляй».

Управление положением затвора возможно вручную при помощи ручки и механически с помощью редуктора или электрического привода. Такие достоинства поворотных затворов “Баттерфляй”, как простота технического обслуживания, монтажа и замены уплотняющих деталей, небольшая строительная высота и масса, а также продолжительные сроки эксплуатации и доступная стоимость широко используются в трубопроводных магистралях бытового назначения.

Отечественная промышленность выпускает широкую линейку изделий запорной трубопроводной арматуры, отвечающих общим и специальным требованиям, высокому качеству и современным технологиям. Стоимость таких изделий может широко варьироваться от 100 руб. до нескольких десятков тысяч рублей, что определяется материалом, назначением, размерами, производителем.

Виды и назначение запорной арматуры
Виды и назначение запорной арматуры Назначение и функции запорной арматуры Изделия запорной арматуры относятся к специальному типу изделий для трубопроводных магистралей, назначение которых

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *