Изоляция трубопроводов матами минераловатными

Конструкция изоляции трубопроводов

Конструкция изоляции трубопроводов с наружным диаметром от 15 до 159 мм, для теплоизоляционного слоя из матов прошивных из стеклянного штапельного волокна на синтетическом связующем, матов прошивных из минеральной и базальтовой ваты, матов из базальтового или стеклянного супертонкого волокна применяется крепление:

  • для трубопроводов наружным диаметром теплоизоляционного слоя не более 200 мм — крепление проволокой диаметром 1,2-2 мм по спирали вокруг теплоизоляционного слоя, при этом спираль закрепляется на проволочных кольцах по краям матов. Если применяются маты в обкладках, то края обкладок сшиваются стеклонитью, кремнеземной нитью, ровин-гом или проволокой диаметром 0,8 мм;

Конструкция тепловой изоляции из волокнистых материалов для труб диаметром не более 200мм.

1. Маты или холсты из стекловолокна или минваты; 2. Спиральное крепление из проволоки диаметром 1,2 — 2,0 мм, 3. Кольцо из проволоки диаметром 1,2 — 2,0 мм, 4. Покровный слой.

  • для трубопроводов наружным диаметром 57-159 мм:
  • при укладке матов в один слой — бандажами из ленты 0,7×20 мм. Шаг установки бандажей зависит от размера применяемых изделий, но не более 500 мм. При укладке матов шириной 1000 мм бандажи рекомендуется устанавливать с шагом 450 мм с отступом 50 мм от края изделия. На изделие шириной 500 мм следует устанавливать 2 бандажа;

Изоляция трубопровода с наружным диаметром от 57 до 219 мм.

а. Изоляция в один слой; б. Изоляция в два слоя.

1. теплоизоляционный слой из волокнистых материалов, 2. кольцо из проволоки диаметром 1,2 — 2,0 мм, 3. бандаж с пряжкой, 4. покровный слой.

  • при укладке матов в два слоя — кольцами из проволоки диаметром 2 мм для внутреннего слоя двухслойных конструкций, бандажами — для наружного слоя двухслойных теплоизоляционных конструкций. Бандажи из ленты 0,7×20 мм устанавливаются по наружному слою так же, как и в однослойной конструкции.

Бандажи из черной стальной ленты должны быть окрашены для предотвращения коррозии. Края обкладок сшиваются, как указано выше. При двухслойной изоляции сшивка краев обкладок внутреннего слоя не производится. При применении для тепловой изоляции трубопроводов формованных изделий, цилиндров или сегментов их крепление осуществляется бандажами. Устанавливаются два бандажа при изоляции цилиндрами. При изоляции сегментами рекомендуется устанавливать бандажи с шагом 250 мм при длине изделия 1000 мм.

Конструкция изоляции трубопроводов с наружным диаметром 219 мм и более для теплоизоляционного слоя из матов применяется крепление:

  • при укладке изделий в один слой — бандажами из ленты 0,7×20 мм и подвесками из проволоки диаметром 1,2 мм. Подвески располагаются равномерно между бандажами и крепятся к трубопроводу. Под подвески устанавливаются подкладки из стеклопластика при применении безобкладочных матов (рис. 2.160). При использовании матов в обкладках подкладки не устанавливаются. Обкладки из стеклоткани сшиваются;
  • при укладке изделий в два слоя кольцами из проволоки диаметром 2 мм и подвесками из проволоки диаметром 1,2 мм для внутреннего слоя двухслойных конструкций. Подвески второго слоя крепятся к подвеске первого слоя снизу. Бандажи из ленты 0,7×20 мм устанавливаются по наружному слою так же, как и в однослойной конструкции.

Изоляция трубопроводов наружным диаметром 219 мм и более теплоизоляционными материалами из волокнистых материалов в один слой.

1 — подвеска, 2 — теплоизоляционный слой, 3 — опорная скоба (опорное кольцо), 4 — бандаж с пряжкой. 5 — подкладка, 6 — покровный слой.

Теплоизоляционный слой укладывается с уплотнением по толщине. В двухслойных конструкциях маты второго слоя должны перекрывать швы внутреннего слоя.
Для трубопроводов наружным диаметром 273 мм и более помимо матов могут быть применены плиты из минеральной ваты плотностью 35-50 кг/м3, хотя оптимальная область применения — для трубопроводов наружным диаметром от 530 мм и более. При изояции плитами крепление теплоизоляционного слоя может производиться бандажами и подвесками. Расположение крепежных элементов — бандажей, подвесок и колец (при двухслойной изоляции) выбирается с учетом длины применяемых плит. Под подвески устанавливаются подкладки из рулонного стеклопластика или рубероида. При применении плит, кэшированных стеклохолстом, стекло-рогожкой, стеклотканью, подкладки не устанавливаются. Плиты укладываются длинной стороной вдоль трубопровода.

Изоляция трубопровода с наружным диаметром 219 мм и более теплоизоляционными материалами из волокнистых материалов в два слоя:

1 — теплоизоляционный слой,2 — бандаж с пряжкой,
3 — опорное кольцо,
4 — покровный слой,
5 — сшивка (для изделий в обкладках),
6 — подвеска,
7 — подкладка,
8 — проволочное кольцо.

В теплоизоляционных конструкциях толщиной менее 100 мм при применении металлического защитного покрытия на горизонтальные трубопроводы следует устанавливать опорные скобы. Скобы устанавливаются на горизонтальные трубопроводы диаметром от 108 мм с шагом 500 мм по длине трубопровода. На трубопроводы наружным диаметром 530 мм и более устанавливаются три скобы по диаметру в верхней части конструкции и одна снизу. Опорные скобы изготавливают из алюминия или оцинкованной стали (в зависимости от материала защитного покрытия) с высотой, соответствующей толщине изоляции.

В горизонтальных теплоизоляционных конструкциях трубопроводов диаметром от 219 мм и более с положительными температурами и толщиной изоляции 100 мм и более устанавливаются опорные кольца. Для трубопроводов с отрицательными температурами в опорных конструкциях должны быть прокладки из стеклотекстолита, дерева или других малотеплопроводных материалов для ликвидации «мостиков холода».

При изоляции формостабильными теплоизоляционными материалами, такими как цилиндры, сегменты из минеральной ваты или стекловолокна, а также матами типа KVM-50 с вертикальной ориентацией волокон (производство «Isover») или «Lamella Mat», опорные конструкции на горизонтальные участки не требуются.

Конструкция изоляции вертикальных трубопроводов с наружным диаметром до 476 мм крепление теплоизоляционного слоя производится бандажами и проволочными кольцами. Для предупреждения сползания колец и бандажей следует устанавливать струны из проволоки диаметром 1,2 или 2 мм.

На вертикальных трубопроводах наружным диаметром 530 мм и более крепление теплоизоляционного слоя осуществляется на проволочном каркасе с установкой проволочных струн, предотвращающих сползание элементов крепления (колец, бандажей). Кольца из проволоки диаметром 2-3 мм устанавливаются по длине трубопровода на его поверхность с шагом 500 мм для плит длиной 1000 и шириной 500 мм и матов шириной 500 и 1000 мм. К кольцам прикрепляются пучки стяжек из проволоки диаметром 1,2 мм с шагом по дуге кольца 500 мм.

Предусматриваются четыре стяжки в пучке при изоляции в один слой и шесть — при изоляции в два слоя. При применении матов шириной 1000 мм стяжки прокалывают теплоизоляционные слои и закрепляются крест-накрест. При применении матов шириной 500 мм и плит шириной 500 мм стяжки проходят в месте стыков изделий.

Бандажи из ленты 0,7×20 мм с пряжками устанавливают с шагом, зависящим от ширины изделия, по 2-Зшт. на изделие (плиту или мат шириной 1000-1250 мм) при однослойной изоляции и по наружному слою при двухслойной изоляции. Вместо бандажей по внутреннему слою двухслойной изоляции можно устанавливать кольца из проволоки диаметром 2 мм.

При применении матов шириной 500 мм следует устанавливать два бандажа (или кольца) на изделие. Края матов в обкладках сшиваются проволокой 0,8 мм или стеклонитью в зависимости от вида обкладки. Струны могут крепиться к разгружающим устройствам, которые устанавливаются с шагом 3-4 м по высоте, или кольцам из проволоки диаметром 5 мм, приваренным к поверхности трубопровода или другим его элементам.

Конструкция изоляции вертикальных трубопроводов устанавливаются разгружающие устройства с шагом 3-4 м по высоте.

При изоляции трубопроводов холодной воды, трубопроводов, транспортирующих вещества с отрицательными температурами, а также трубопроводов тепловых сетей подземной прокладки для крепления элементов конструкций следует применять оцинкованную проволоку, бандажи из оцинкованной стали или с окраской.

>Технологии монтажа тепловой изоляции трубопроводов

Изоляция трубопроводов матами прошивными из минеральной ваты

Изоляция трубопроводов матами прошивными из минеральной ваты

Для этого вида работ используются маты либо безобкладочные, либо в обкладках из металлической сетки (до температуры 700 °С), из стеклянной ткани (до температуры 450 °С) и картона (до температуры 150 °С).
Безобкладочные маты могут быть применены и для низкотемпературной изоляции (до -180 °С).
Состав работ
1. Резка изделий по заданному размеру.
2. Укладка изделий с подгонкой по месту.
3. Крепление изделий проволочными кольцами.
4. Заделка швов отходами изделий.
5. Сшивка стыков (матов в обкладках).
6. Дополнительное крепление изделий проволочными кольцами или бандажами (по верхнему слою).
Безобкладочные маты применяются для изоляции трубопроводов диаметром 57-426 мм, а маты с обкладками — на трубопроводах диаметром 273 мм и более.
Изделия укладываются на поверхность трубопроводов в один-два слоя с перекрытием швов и закрепляются бандажными кольцами из упаковочной ленты сечением 0,7×20 мм или стальной проволоки диаметром 1,2-2,0 мм, устанавливаемыми через каждые 500 мм.
Теплоизоляционный слой на трубопроводах диаметром 273 мм и более должен иметь дополнительное крепление в виде проволочных подвесок (рис.1).

Рис.1. Изоляция минераловатными прошивными матами:
а — трубопроводов: 1 — проволочная подвеска диаметром 2 мм (применяется для трубопроводов диаметром 273 мм и более); б — газоходов: 1 — крепежные штыри диаметром 5 мм; 2 — теплоизоляционное изделие; 3 — сшивка проволокой диаметром 0,8 мм; 4 — проволока диаметром 2 мм (крепление нижнего слоя); в — плоских поверхностей: 1 — минераловатные маты; 2- штыри до укладки изоляционного слоя; 3 — штыри после укладки изоляционного слоя; 4 — сшивка проволокой диаметром 0,8 мм; г — сферы: 1 — сшивка проволокой диаметром 0,8 мм; 2 — проволочное кольцо; 3 — проволочные бандажи; 4 — минераловатные изделия; 5 — крепежные штыри

При изоляции трубопроводов изделиями в обкладках из металлической сетки продольные швы должны прошиваться проволокой диаметром 0,8 мм. Для труб диаметром более 600 мм прошиваются также поперечные швы.
Минераловатные прошивные маты в монтаже уплотняются и достигают следующей плотности (по ГОСТу в конструкции), кг/м; маты марки 100-100/132; марки 125-125/162.

Характеристики прокладки сетей и нормативной методики вычислений

Выполнение вычислений по определению толщины теплоизоляционного слоя цилиндрических поверхностей — процесс достаточно трудоемкий и сложный. Если вы не готовы доверить его специалистам, следует запастись вниманием и терпением для получения верного результата. Самый распространенный способ расчета теплоизоляции труб — это вычисление по нормируемым показателям тепловых потерь. Дело в том, что СНиПом установлены величины потерь тепла трубопроводами разных диаметров и при различных способах их прокладки:

Схема утепления трубы.

  • открытым способом на улице;
  • открыто в помещении или тоннеле;
  • бесканальным способом;
  • в непроходных каналах.

Суть расчета заключается в подборе теплоизоляционного материала и его толщины таким образом, чтобы величина тепловых потерь не превышала значений, прописанных в СНиПе. Методика вычислений также регламентируется нормативными документами, а именно — соответствующим Сводом Правил. Последний предлагает несколько более упрощенную методику, нежели большинство существующих технических справочников. Упрощения заключены в таких моментах:

  1. Потери теплоты при нагреве стенок трубы транспортируемой в ней средой ничтожно малы по сравнению с потерями, которые теряются в слое наружного утеплителя. По этой причине их допускается не учитывать.
  2. Подавляющее большинство всех технологических и сетевых трубопроводов изготовлено из стали, ее сопротивление теплопередаче чрезвычайно низкое. В особенности если сравнивать с тем же показателем утеплителя. Поэтому сопротивление теплопередаче металлической стенки трубы рекомендуется во внимание не принимать.

Методика просчета однослойной теплоизоляционной конструкции

Основная формула расчета тепловой изоляции трубопроводов показывает зависимость между величиной потока тепла от действующей трубы, покрытой слоем утеплителя, и его толщиной. Формула применяется в том случае, если диаметр трубы меньше чем 2 м:

Формула расчета теплоизоляции труб.

ln B = 2πλ

В этой формуле:

  • λ — коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
  • K — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры, некоторые значения K можно взять из Таблицы 1;
  • tт — температура в градусах транспортируемой среды или теплоносителя;
  • tо — температура наружного воздуха, ⁰C;
  • qL — величина теплового потока, Вт/м2;
  • Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.

Таблица 1

Условия прокладки трубы Значение коэффициента К
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода до 150 мм. 1.2
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода 150 мм и более. 1.15
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на подвесных опорах. 1.05
Неметаллические трубопроводы, проложенные на подвесных или скользящих опорах. 1.7
Бесканальный способ прокладки. 1.15

Значение теплопроводности утеплителя λ является справочным, в зависимости от выбранного теплоизоляционного материала. Температуру транспортируемой среды tт рекомендуется принимать как среднюю в течение года, а наружного воздуха tо как среднегодовую. Если изолируемый трубопровод проходит в помещении, то температура внешней среды задается техническим заданием на проектирование, а при его отсутствии принимается равной +20°С. Показатель сопротивления теплообмену на поверхности теплоизоляционной конструкции Rн для условий прокладки по улице можно брать из Таблицы 2.

Таблица 2

Примечание: величину Rн при промежуточных значениях температуры теплоносителя вычисляют методом интерполяции. Если же показатель температуры ниже 100 ⁰C, величину Rн принимают как для 100 ⁰C.

Показатель В следует рассчитывать отдельно:

Таблица тепловых потерь при разной толщине труби и теплоизоляции.

B = (dиз + 2δ) / dтр, здесь:

  • dиз — наружный диаметр теплоизоляционной конструкции, м;
  • dтр — наружный диаметр защищаемой трубы, м;
  • δ — толщина теплоизоляционной конструкции, м.

Вычисление толщины изоляции трубопроводов начинают с определения показателя ln B, подставив в формулу значения наружных диаметров трубы и теплоизоляционной конструкции, а также толщины слоя, после чего по таблице натуральных логарифмов находят параметр ln B. Его подставляют в основную формулу вместе с показателем нормируемого теплового потока qL и производят расчет. То есть толщина теплоизоляции трубопровода должна быть такой, чтобы правая и левая часть уравнения стали тождественны. Это значение толщины и следует принимать для дальнейшей разработки.

Рассмотренный метод вычислений относился к трубопроводам, диаметр которых менее 2 м. Для труб большего диаметра расчет изоляции несколько проще и производится как для плоской поверхности и по другой формуле:

δ =

В этой формуле:

  • δ — толщина теплоизоляционной конструкции, м;
  • qF — величина нормируемого теплового потока, Вт/м2;
  • остальные параметры — как в расчетной формуле для цилиндрической поверхности.

Методика просчета многослойной теплоизоляционной конструкции

Таблица изоляции медных и стальных труб.

Некоторые перемещаемые среды имеют достаточно высокую температуру, которая передается наружной поверхности металлической трубы практически неизменной. При выборе материала для тепловой изоляции такого объекта сталкиваются с такой проблемой: не каждый материал способен выдержать высокую температуру, например, 500-600⁰C. Изделия, способные контактировать с такой горячей поверхностью, в свою очередь, не обладают достаточно высокими теплоизоляционными свойствами, и толщина конструкции получится неприемлемо большой. Решение — применить два слоя из различных материалов, каждый из которых выполняет свою функцию: первый слой ограждает горячую поверхность от второго, а тот защищает трубопровод от воздействия низкой температуры наружного воздуха. Главное условие такой термической защиты состоит в том, чтобы температура на границе слоев t1,2 была приемлемой для материала наружного изоляционного покрытия.

Для расчета толщины изоляции первого слоя используется формула, уже приводимая выше:

δ =

Второй слой рассчитывают по этой же формуле, подставляя вместо значения температуры поверхности трубопровода tт температуру на границе двух теплоизоляционных слоев t1,2. Для вычисления толщины первого слоя утеплителя цилиндрических поверхностей труб диаметром менее 2 м применяется формула такого же вида, как и для однослойной конструкции:

ln B1 = 2πλ

Подставив вместо температуры окружающей среды величину нагрева границы двух слоев t1,2 и нормируемое значение плотности потока тепла qL, находят величину ln B1. После определения числового значения параметра B1 через таблицу натуральных логарифмов рассчитывают толщину утеплителя первого слоя по формуле:

Данные для расчета теплоизоляции.

δ1 = dиз1 (B1 — 1) / 2

Расчет толщины второго слоя выполняют с помощью того же уравнения, только теперь температура границы двух слоев t1,2 выступает вместо температуры теплоносителя tт:

ln B2 = 2πλ

Вычисления делаются аналогичным образом, и толщина второго теплоизоляционного слоя считается по той же формуле:

δ2 = dиз2 (B2 — 1) / 2

Такие непростые расчеты вести вручную очень затруднительно, при этом теряется много времени, ведь на протяжении всей трассы трубопровода его диаметры могут меняться несколько раз. Поэтому, чтобы сэкономить трудозатраты и время на вычисление толщины изоляции технологических и сетевых трубопроводов, рекомендуется пользоваться персональным компьютером и специализированным программным обеспечением. Если же таковое отсутствует, алгоритм расчета можно внести в программу Microsoft Exel, при этом быстро и успешно получать результаты.

Метод определения по заданной величине снижения температуры теплоносителя

Материалы для теплоизоляции труб по СНиП.

Задача такого рода часто ставится в том случае, если до конечного пункта назначения транспортируемая среда должна дойти по трубопроводам с определенной температурой. Поэтому определение толщины изоляции требуется произвести на заданную величину снижения температуры. Например, из пункта А теплоноситель выходит по трубе с температурой 150⁰C, а в пункт Б он должен быть доставлен с температурой не менее 100⁰C, перепад не должен превысить 50⁰C. Для такого расчета в формулы вводится длина l трубопровода в метрах.

Вначале следует найти полное сопротивление теплопередаче Rп всей теплоизоляции объекта. Параметр высчитывается двумя разными способами в зависимости от соблюдения следующего условия:

Если значение (tт.нач — tо) / (tт.кон — tо) больше или равно числу 2, то величину Rп рассчитывают по формуле:

Rп = 3.6Kl / GC ln

В приведенных формулах:

  • K — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры (Таблица 1);
  • tт.нач — начальная температура в градусах транспортируемой среды или теплоносителя;
  • tо — температура окружающей среды, ⁰C;
  • tт.кон — конечная температура в градусах транспортируемой среды;
  • Rп — полное тепловое сопротивление изоляции, (м2 ⁰C) /Вт
  • l — протяженность трассы трубопровода, м;
  • G — расход транспортируемой среды, кг/ч;
  • С — удельная теплоемкость этой среды, кДж/(кг ⁰C).

Теплоизоляция стальной трубы из базальтового волокна.

В противном случае выражение (tт.нач — tо) / (tт.кон — tо) меньше числа 2, величина Rп высчитывается таким образом:

Rп = 3.6Kl : GC (tт.нач — tт.кон)

Обозначения параметров такие же, как и в предыдущей формуле. Найденное значение термического сопротивления Rп подставляют в уравнение:

ln B = 2πλ (Rп — Rн), где:

  • λ — коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
  • Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.

После чего находят числовое значение В и делают расчет изоляции по знакомой формуле:

δ = dиз (B — 1) / 2

В данной методике просчета изоляции трубопроводов температуру окружающей среды tо следует принимать по средней температуре самой холодной пятидневки. Параметры К и Rн — по приведенным выше таблицам 1,2. Более развернутые таблицы для этих величин имеются в нормативной документации (СНиП 41-03-2003, Свод Правил 41-103-2000).

Метод определения по заданной температуре поверхности утепляющего слоя

Данное требование актуально на промышленных предприятиях, где различные трубопроводы проходят внутри помещений и цехов, в которых работают люди. В этом случае температура любой нагретой поверхности нормируется в соответствии с правилами охраны труда во избежание ожогов. Расчет толщины теплоизоляционной конструкции для труб диаметром свыше 2 м выполняется в соответствии с формулой:

Формула определения толщины теплоизоляции.

δ = λ (tт — tп) / ɑ (tп — t0), здесь:

  • ɑ — коэффициент теплоотдачи, принимается по справочным таблицам, Вт/(м2 ⁰C);
  • tп — нормируемая температура поверхности теплоизоляционного слоя, ⁰C;
  • остальные параметры — как в предыдущих формулах.

Расчет толщины утеплителя цилиндрической поверхности производится с помощью уравнения:

ln B =(dиз + 2δ) / dтр = 2πλ Rн (tт — tп) / (tп — t0)

Обозначения всех параметров как в предыдущих формулах. По алгоритму данный просчет схож с вычислением толщины утеплителя по заданному тепловому потоку. Поэтому дальше он выполняется точно так же, конечное значение толщины теплоизоляционного слоя δ находят так:

δ = dиз (B — 1) / 2

Предложенная методика имеет некоторую погрешность, хотя вполне допустима для предварительного определения параметров утепляющего слоя. Более точный расчет выполняется методом последовательных приближений с помощью персонального компьютера и специализированного программного обеспечения.

Соответствие параметров и материала утеплителя требованиям СНиП

Схема изоляции трубы скорлупой ППУ.

Расчет изоляции для технологических или сетевых трубопроводов по методу нормируемой плотности теплового потока предполагает, что его значение qL известно. В таблицах и приложениях к СНиП 41-03-2003 приведены эти значения, как и величины коэффициента К дополнительных потерь. Следует правильно пользоваться этими таблицами, так как они составлены для объектов, находящихся в европейском регионе Российской Федерации. Для определения нормируемого теплового потока трубопроводов, строящихся в других регионах, его значение необходимо умножать на специально введенный для этого коэффициент. В приложении СНиП указаны величины этих коэффициентов для каждого региона с учетом способа прокладки трубопровода.

При выборе изоляции трубопроводов различного назначения нужно обращать внимание на материал, из которого она изготовлена. Нормативная документация регламентирует применение горючих материалов разных групп горючести. Например, теплоизоляционные изделия группы горючести Г3 и Г4 не допускается применять на объектах:

  1. В наружном технологическом оборудовании, исключая те установки, которые стоят отдельно.
  2. При совместной прокладке с другими трубопроводами, которые перемещают горючие газы или жидкости.
  3. При общей прокладке в одном тоннеле или эстакаде с электрическими кабелями.
  4. Запрещено применять такие утеплители на трубопроводах внутри зданий. Исключение — здания IV степени огнестойкости.

Прежде чем приступать к выполнению такого серьезного и непростого расчета, следует убедиться, что выбранный теплоизоляционный материал для труб соответствует всем требованиям нормативной документации применительно к данному объекту.

В противном случае вычисления придется производить несколько раз.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *