Кислоты неорганические список

Свойства

P4O10 очень активно взаимодействует с водой (H-форма поглощает воду даже со взрывом), образуя смеси фосфорных кислот, состав которых зависит от количества воды и других условий:

P 4 O 10 + 6 H 2 O → 4 H 3 P O 4 {\displaystyle {\mathsf {P_{4}O_{10}+6H_{2}O\rightarrow 4H_{3}PO_{4}}}}

При сильном нагревании распадается на:

P 4 O 10 → P 4 O 6 + 2 O 2 {\displaystyle {\mathsf {P_{4}O_{10}\rightarrow P_{4}O_{6}+2O_{2}}}}

Он также способен извлекать воду из других соединений, представляя собой сильное дегидратирующее средство:

4 H N O 3 + P 4 O 10 → 4 H P O 3 + 2 N 2 O 5 {\displaystyle {\mathsf {4HNO_{3}+P_{4}O_{10}\rightarrow 4HPO_{3}+2N_{2}O_{5}}}} 4 H C l O 4 + P 4 O 10 → ( H P O 3 ) 4 + 2 C l 2 O 7 {\displaystyle {\mathsf {4HClO_{4}+P_{4}O_{10}\rightarrow (HPO_{3})_{4}+2Cl_{2}O_{7}}}}

Оксид фосфора(V) широко применяется в органическом синтезе. Он реагирует с амидами, превращая их в нитрилы:

P 4 O 10 + R C O N H 2 → P 4 O 9 ( O H ) 2 + R C N {\displaystyle {\mathsf {P_{4}O_{10}+RCONH_{2}\rightarrow P_{4}O_{9}(OH)_{2}+RCN}}}

Карбоновые кислоты переводит в соответствующие ангидриды:

P 4 O 10 + 12 R C O O H → 4 H 3 P O 4 + 6 ( R C O ) 2 O {\displaystyle {\mathsf {P_{4}O_{10}+12RCOOH\rightarrow 4H_{3}PO_{4}+6(RCO)_{2}O}}}

Оксид фосфора(V) также взаимодействует со спиртами, эфирами, фенолами и другими органическими соединениями. При этом происходит разрыв связей P—О—P и образуются фосфорорганические соединения. Реагирует с NH3 и с галогеноводородами, образуя фосфаты аммония и оксигалогениды фосфора:

P 4 O 10 + 8 P C l 3 + O 2 → 12 P O C l 3 {\displaystyle {\mathsf {P_{4}O_{10}+8PCl_{3}+O_{2}\rightarrow 12POCl_{3}}}}

При сплавлении P4O10 с основными оксидами образует различные твёрдые фосфаты, природа которых зависит от условий реакции.

Неметаллы: общая характеристика

Неметаллы отличаются от металлов тем, что на внешнем энергетическом уровне они имеют большее количество электронов. Поэтому их окислительные свойства выражены сильнее, чем у металлов. Неметаллы характеризуются высокими значениями электроотрицательности и высокий восстановительный потенциал.

К неметаллам относятся химические элементы, которые находятся в газообразном, жидком или твердом агрегатном состоянии. Так, например, азот, кислород, фтор, хлор, водород – газы; йод, сера, фосфор – твердые; бром – жидкость (при комнатной температуре). Всего существует 22 неметалла.

Рис. 1. Неметаллы – газы, твердые, жидкости.

С увеличением заряда ядра атома наблюдается закономерность изменения свойств химических элементов от металлических к неметаллическим.

Водородные свойства неметаллов в основном являются летучими соединениями, которые в водных растворах имеют кислотный характер. Они имеют молекулярные структуры, а также ковалентную полярную связь. Некоторые, например, вода, аммиак или фтороводород образуют водородные связи. Соединения образуются при непосредственном взаимодействии неметаллов с водородом. Пример:

S+H2 =H2S (до 350 градусов равновесие смещено вправо)

Все водородные соединения имеют восстановительные свойства, причем их восстановительная сила возрастает справа налево по периоду и сверху вниз в группе. Так, сероводород сгорает при большом количестве кислорода:

2H2 S+3O3 =2SO2 +2H2 O+1158 кДж.

Окисление может идти по другому пути. Так, уже на воздухе водный раствор сероводорода мутнеет в результате образования серы:

H2 S+3O2 =2S+2H2O

Соединения неметаллов с кислородом, как правило, являются кислотными оксидами, которым соответствуют кислородосодержащие кислоты (оксокислоты). Структура оксидов типичных неметаллов молекулярная.

Чем выше степень окисления неметалла, тем сильнее соответствующая кислородосодержащая кислота. Так, хлор непосредственно не взаимодействует с кислородом, однако образует ряд оксокислот, которым соответствуют оксиды, ангидриды этих кислот.

Наиболее известны такие соли этих кислот, как хлорная известь CaOCl2 (смешанная соль хлорноватистой и хлороводородной кислот), бертолетова соль KClO3 (хлорат калия).

Азот в оксидах проявляет положительные степени окисления +1, +2, +3, +4, +5. Первые два оксида N2O и NO – несолеобразующие и являются газами. N2O3 (оксид азота III) – является ангидридом азотистой кислоты HNO2 . Оксид азота IV – бурый газ NO2 – газ, который хорошо растворяется в воде, образуя при этом две кислоты. Этот процесс можно выразить уравнением:

2NO2 +H2 O=HNO3 (азотная кислота)+HNO2 (азотистая кислота) – окислительно-восстановительная реакция диспропорционирования

Рис. 2. Азотистая кислота.

Ангидрид азотной кислоты N2O5 – белое кристаллическое вещество, которое легко растворяется в воде. Пример:

N2O5 +H2O=2HNO3

Соли азотной кислоты называются селитрами, они растворимы в воде. Соли калия, кальция, натрия используют для получения азотных удобрений.

Фосфор образует оксиды, проявляя степени окисления +3 и +5. Наиболее устойчивый оксид – фосфорный ангидрид P2O5 , образующий молекулярную решетку, в узлах которой находятся димеры P4O10 . Соли ортофосфорной кислоты применяются в качестве фосфорных удобрений, например, аммофос NH4 H2 PO4 (дигидрофосфат аммония).

Что мы узнали?

В школьной программе по химии (8-9 класс) большое внимание уделяется изучению общих свойств неметаллов. В данной статье изучается информация, чем отличаются металлы от неметаллов, и какими особенностями они обладают. Также приведена таблица химических свойств неметалов.

Оценка доклада

Взаимодействие с водой

Многие неметаллы взаимодействуют с водой с образованием оксидов (и/или других соединений). Реакции идут при сильном нагревании.

С + H2O → CO + H2

6B + 6H2O → 2H3B3O3(бороксин)+ 3H2

4P + 10H2O → 2P2O5 + 5H2

3S + 2H2O → 2H2S + SO2

Галогены при взаимодействии с водой диспропорционируют (образуют из соединения с одной степенью окисления соединения с различными степенями окисления)- кроме F2. Реакции идут при комнатной температуре.

Cl2 + H2O → HCl + HClO

Br2 + H2O → HBr + HBrO

2F2+ 2H2O → 4HF + O2

Взаимодействие с неметаллами

Взаимодействие с кислородом.

Большинство неметаллов (кроме галагенов, благородных газов) взаимодействуют с кислородом с образованием оксидов, а при определенных условиях (температура, давление, катализаторы) – высших оксидов.

N2 + O2 → 2NO (реакция идет при температуре 2000°C или в электрической дуге)

С + O2 → СO2

4B + 3O2 → 2B2O3

S + O2 → SO2

Взаимодействие с фтором

Большинство неметаллов (кроме N2, С (алмаз), некоторые благородные газы) взаимодействуют с фтором с образованием фторидов.

O2 +2F2 → 2OF2 (при пропускание электрического тока)

C + 2F2 → CF4 (при температуре 900°C)

S +3F2 → SF6

2.3 Взаимодействие с галогенами (Cl2, Br2)

C неметаллами (кроме углерода, азота, фтора, кислорода и инертных газов), образует соответствующие галогениды (хлориды и бромиды).

2S + Cl2 → S2Cl2

2S + Br2 → S2Br2

2P + 5Cl2 → 2PCl5 (сжигание в атмосфере хлора)

Cl2 + Br2 → 2BrCl

Cl2 + I2 → 2ICl (нагрев до 45°C))

Br2+ I2→ 2IBr

Взаимодействие с оксидами

Углерод и кремний восстанавливают металлы и неметаллы из их оксидов. Реакции идут при нагревании.

SiO2+C=CO2+Si

MnO2 + Si → Mn + SiO2.

Взаимодействие со щелочами

Большинство неметаллов (кромеF2, Si) диспропорционируют при взаимодействии со щелочами. Благородные газы, O2, N2 и некоторые другие металлы не взаимодействуют со щелочами

Cl2 + 2NaOH → NaCl + NaClO

3Cl2 + 6NaOH → 5NaCl + NaClO3 + H2O (при нагревании)

3S + 6NaOH → 2Na2S + Na2SO3 + 3H2O (присплавлении)

P + NaOH → Na3PO3 + PH3

Si +2NaOH+ H2O → Na2SiO3 + 2H2

4F2 + 6NaOH → OF2 + 6NaF + 3H2O + O2

Взаимодействие с кислотами-окислителями

Все неметаллы (кроме галогенов, благородных газов, N2, O2, Si) взаимодействуют с кислотами – окислителями с образованием соответсвующей кислородсодержащей кислоты (или оксида).

C + 2 H2SO4→ CO2 + 2SO2 +2H2O

B + 3HNO3 → H3BO3 + 3NO2

S + 6HNO3 → H2SO4 + 6NO2 + 2H2O

Взаимодействие с солями

Более электроотрицательный галоген вытесняет менее электроотрицательный реагент из его соли или водородного соединения

2NaBr + Cl2 → 2NaCl + Br2

Химические свойства неоксидных бинарных соединений различно. Большинство из них (кроме галогенидов) при взаимодействии с кислородом образуют два оксида (в случае аммиака необходимо использовать катализаторы).


Химические свойства основных оксидов

Взаимодействие с водой

Оксиды щелочных и щелочноземельных металлов взаимодействуют с водой с образованием растворимых (малорастворимых) соединений – щелочи

Na2O + H2O → 2NaOH

Взаимодействие с оксидами

Основные оксиды взаимодействуют с кислотными и амфотерными оксидами с образованием солей.

Na2O + SO3 → Na2SO4

CaO + Al2O3→ CaAl2O4 (сплавление)

Взаимодействие с кислотами

Основные оксиды взаимодействуют с кислотами

CaO + 2HCl→ CaCl2 + H2O

FeO + 2HCl→ FeCl2 + H2O

Окислительно – восстановительные реакции

Основные оксиды элементов с переменной степенью окисления могут участвовать в окислительно-восстановительных реакциях

FeO + 4HNO3→Fe(NO3)3 + NO2 + 2H2O

2MnO + O2 → 2MnO2

Химические свойства амфотерных оксидов

Взаимодействие с оксидами

Амфотерные оксиды взаимодействуют с основными, кислотными и амфотерными оксидами с образованием солей.

Na2O + Al2O3→ 2NaAlO2

3SO3+ Al2O3→ 2Al2(SO4)3

ZnO + Al2O3→ ZnAl2O4 (сплавление)

Взаимодействие с кислотами и основаниями

Амфотерные оксиды взаимодействуют с основаниями и кислотами

6HCl + Al2O3→ 2AlCl3 + 3H2O

ZnO + 2NaOH → Na2ZnO2 + H2O (при нагревании)

Взаимодействие с солями

Малолетучие амфотерные оксиды вытесняют более летучие кислые оксиды из их солей

Al2O3 + Na2CO3 → 2NaAlO2 + CO2

Окислительно – восстановительные реакции

Амфотерные оксиды элементов с переменной степенью окисления могут участвовать в окислительно-восстановительных реакциях.

MnO2 + 4HCl→ MnCl2 + Cl2 + 2H2O

Химические свойства кислотных оксидов

Свойства и классификация неорганических кислот

Формы существования и агрегатное состояние

Большинство неорганических кислот при обычных условиях существуют в жидком состоянии, некоторые – в твёрдом состоянии (ортофосфорная, борная, вольфрамовая, поликремниевые (гидраты SiO2) и др.). Кислотами также являются водные растворы некоторых газообразных соединений (галогеноводородов, сероводорода H2S, диоксида азота NO2, диоксида углерода CO2 и др.). Некоторые кислоты (например, угольную Н2СО3, сернистую Н2SO3, хлорноватистую HClO и др.) невозможно выделить в виде индивидуальных соединений, они существуют только в растворе.

По химическому составу различают бескислородные кислоты (HCl, H2S, HF, HCN) и кислородсодержащие (оксокислоты)(H2SO4, H3PO4). Состав бескислородных кислот можно описать формулой: HnХ, где Х — химический элемент образующий кислоту (галоген, халькоген) или бескислородный радикал: например, бромоводородная HBr, циановодородная HCN, азидоводородная HN3 кислоты. В свою очередь, все кислородсодержащие кислоты имеют состав, который можно выразить формулой: НnXОm, где X — химический элемент, образующий кислоту.

Таутомерные формы родановодородной кислоты Таутомерные формы фосфористой кислоты

Атомы водорода в кислородсодержащих кислотах чаще всего связаны с кислородом полярной ковалентной связью. Известны кислоты с несколькими (чаще двумя) таутомерными или изомерными формами, которые различаются положением атома водорода:

Отдельные классы неорганических кислот образуют соединения, в которых атомы кислотообразующего элемента образуют молекулярные гомо- и гетерогенные цепные структуры. Изополикислоты — это кислоты, в которых атомы кислотообразующего элемента связаны через атом кислорода (кислородный мостик). Примерами выступают полисерные H2S2O7 и H2S3O10 и полихромовые кислоты H2Cr2O7 и H2Cr3O10. Кислоты с несколькими атомами разных кислотообразующих элементов, соединенных через атом кислорода, называются гетерополикислотами. Существуют кислоты, молекулярная структура которых образована цепочкой одинаковых кислотообразующих атомов, например в политионовых кислотах H2SnO6 или в сульфанах H2Sn, где n≥2.

Отдельно выделяют пероксокислоты — кислоты, содержащие пероксогруппы , например пероксомоносерная H2SO5 и пероксодисерная H2S2O8 кислоты. Тиокислотами называют кислоты, содержащие вместо атомов кислорода атомы серы, например тиосерная кислота H2SO3S. Существуют и комплексные кислоты, например: H2, H, H4 и др.

Равновесные процессы в водных растворах

См. также: Теории кислот и оснований

Химические свойства кислот определяются способностью их молекул диссоциировать в водной среде с образованием гидратированных ионов H+ и анионов кислотных остатков А–:

H A + H 2 O ⇄ H 3 O + + A − {\displaystyle {\mathsf {HA+H_{2}O\rightleftarrows H_{3}O^{+}+A^{-}}}} H A → H + + A − {\displaystyle {\mathsf {HA\rightarrow H^{+}+A^{-}}}} (упрощённая запись)

В зависимости от значения константы химического равновесия, также называемой константой кислотности Ka, выделяют сильные и слабые кислоты:

H C l → H + + C l − K a 10 7 {\displaystyle {\mathsf {HCl\rightarrow H^{+}+Cl^{-}\ \ K_{a}~10^{7}}}} H N O 2 → H + + N O 2 − K a 10 − 5 {\displaystyle {\mathsf {HNO_{2}\rightarrow H^{+}+NO_{2}^{-}\ \ K_{a}~10^{-5}}}}

Из числа распространённых кислот к сильным относятся хлорная, азотная, серная и хлороводородная. Азотистая HNO2, угольная H2CO3 (CO2·H2O), фтороводородная HF – примеры слабых кислот. Также используется более детальная классификация по значению Ka на очень слабые (≤10−7), слабые (~10−2), средней силы (~10−1), сильные (~103), очень сильные (≥108).

Для неорганических кислородсодержащих кислот вида HnXOm известно эмпирическое правило, по которому значение первой константы связано со значением (m – n). При (m – n) = 0 кислота очень слабая, при 1 — слабая, при 2 — сильная, и, наконец, при 3 — кислота очень сильная:

Кислота Значение
(m – n)
Ka
HClO 0 10−8
H3AsO3 0 10−10
Н2SО3 1 10−2
Н3РО4 1 10−2
HNO3 2 101
H2SO4 2 103
HClO4 3 1010

Данная закономерность обусловлена усилением поляризации связи Н-О вследствие сдвига электронной плотности от связи к электроотрицательному атому кислорода по подвижным π-связям Э=O и делокализацией электронной плотности в анионе.

Неорганические кислоты обладают свойствами, общими для всех кислот, среди которых: окрашивание индикаторов, растворение активных металлов с выделением водорода (кроме HNO3), способность реагировать с основаниями и основными оксидами с образованием солей, например:

2 H C l + M g → M g C l 2 + H 2 {\displaystyle {\mathsf {2HCl+Mg\rightarrow MgCl_{2}+H_{2}\uparrow }}} H N O 3 + N a O H → N a N O 3 + H 2 O {\displaystyle {\mathsf {HNO_{3}+NaOH\rightarrow NaNO_{3}+H_{2}O}}} 2 H C l + C a O → C a C l 2 + H 2 O {\displaystyle {\mathsf {2HCl+CaO\rightarrow CaCl_{2}+H_{2}O}}}

Число атомов водорода, отщепляемых от молекулы кислоты и способных замещаться на металл с образованием соли, называется основностью кислоты. Кислоты можно разделить на одно-, двух- и трехосновные. Кислоты с более высокой основностью неизвестны.

Одноосновными являются многие неорганические кислоты: галогеноводородные вида HHal, азотная HNO3, хлорная HClO4, роданистоводородная HSCN и др. Серная H2SO4, хромовая H2CrO4, сероводородная H2S служат примерами двухосновных кислот и т. д.

Многоосновные кислоты диссоциируют ступенчато, каждой ступени отвечает своя константа кислотности, причем всегда каждая последующая Кa меньше предыдущей ориентировочно на пять порядков. Ниже показаны уравнения диссоциации трехосновной ортофосфорной кислоты:

H 3 P O 4 ⇄ H + + H 2 P O 4 − K a 1 = 7 ⋅ 10 − 3 {\displaystyle {\mathsf {H_{3}PO_{4}\rightleftarrows H^{+}+H_{2}PO_{4}^{-}\ \ K_{a1}=7\cdot 10^{-3}}}} H 2 P O 4 − ⇄ H + + H P O 4 2 − K a 2 = 6 ⋅ 10 − 8 {\displaystyle {\mathsf {H_{2}PO_{4}^{-}\rightleftarrows H^{+}+HPO_{4}^{2-}\ \ K_{a2}=6\cdot 10^{-8}}}} H P O 4 2 − ⇄ H + + P O 4 3 − K a 3 = 1 ⋅ 10 − 12 {\displaystyle {\mathsf {HPO_{4}^{2-}\rightleftarrows H^{+}+PO_{4}^{3-}\ \ K_{a3}=1\cdot 10^{-12}}}}

Основность определяет число рядов средних и кислых солей − производных кислоты.

К замещению способны только атомы водорода, входящие в состав гидроксигрупп −OH, поэтому, например, ортофосфорная кислота H3PO4 образует средние соли — фосфаты вида Na3PO4, и два ряда кислых − гидрофосфаты Na2HPO4 и дигидрофосфаты NaH2PO4. Тогда как, у фосфористой кислоты H2(HPO3) только два ряда − фосфиты и гидрофосфиты, а у фосфорноватистой кислоты H(H2PO2) − только ряд средних солей − гипофосфитов.

Исключение составляет борная кислота H3BO3, которая в водном растворе существует в виде одноосновного гидроксокомплекса:

H 3 B O 3 + 2 H 2 O ⇄ H 3 O + − {\displaystyle {\mathsf {H_{3}BO_{3}+2H_{2}O\rightleftarrows H_{3}O^{+}^{-}}}}

Современные теории кислот и оснований значительно расширяют понятие кислотных свойств. Так, кислота Льюиса — вещество, молекулы или ионы которого способны принимать электронные пары, в том числе и не содержащие ионов водорода: например, катионы металлов (Ag+, Fe3+), ряд бинарных соединений (AlCl3, BF3, Al2O3, SO3, SiO2). Протонные кислоты рассматриваются теорией Льюиса как частный случай класса кислот.

Окислительно-восстановительные свойства

Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.

Все пероксокислоты и многие кислородсодержащие кислоты (азотная HNO3, серная H2SO4, марганцовая HMnO4, хромовая Н2CrO4, хлорноватистая HClO и др.) — сильные окислители. Окислительная активность этих кислот в водном растворе выражена сильнее, чем у их солей; при том окислительные свойства сильно ослабевают при разбавлении кислот (например, свойства разбавленной и концентрированной серной кислоты). Неорганические кислоты также всегда менее термически устойчивы, чем их соли. Указанные различия связаны с дестабилизирующим действием сильнополяризованного атома водорода в молекуле кислоты. Наиболее выразительно это проявляется в свойствах кислородсодержащих кислот-окислителей, например, хлорной и серной. Этим же объясняется невозможность существования вне раствора ряда кислот при относительной стабильности их солей. Исключение составляет азотная кислота и её соли, проявляющие сильно выраженные окислительные свойства вне зависимости от разбавления раствора. Такое поведение связано с особенностями строения молекулы HNO3.

Номенклатура

См. также: Химическая номенклатура

Номенклатура неорганических кислот прошла долгий путь развития и складывалась постепенно. Наряду с систематическими названиями кислот широко применяются традиционные и тривиальные. Некоторые распространённые кислоты могут в различных источниках иметь разные названия: например, водный раствор HCl может именоваться соляной, хлороводородной, хлористоводородной кислотой.

Традиционные русские названия кислот образованы прибавлением к названию элемента морфем -ная или -овая (хлорная, серная, азотная, марганцовая). Для разных кислородсодержащих кислот, образованных одним элементом, используется -истая для более низкой степени окисления (сернистая, азотистая). В ряде случаев для промежуточных степеней окисления дополнительно используются морфемы -новатая и -новатистая (см. ниже названия кислородсодержащих кислот хлора).

Традиционные названия некоторых неорганических кислот и их солей приведены в таблице:

Формула кислоты Традиционное название Тривиальное название Название соли
H3AsO4 Мышьяковая Арсенаты
H3ВO3 Борная Бораты
Н2СО3 (CO2•H2O) Угольная Карбонаты
НCN Циановодородная Синильная Цианиды
Н2CrO4 Хромовая Хроматы
НМnO4 Марганцовая Перманганаты
HNO3 Азотная Нитраты
HNO2 Азотистая Нитриты
Н3РО4 Ортофосфорная Фосфорная Ортофосфаты
H2SO4 Серная Сульфаты
Н2SiO3 (SiO2•H2О) Метакремниевая Кремниевая Метасиликаты
H4SiO4 (SiO2•2H2O) Ортокремниевая Ортосиликаты
H2S Сероводородная Сульфиды
HF Фтороводородная Плавиковая Фториды
НCl Хлороводородная Соляная Хлориды
НВr Бромоводородная Бромиды
HI Иодоводородная Иодиды

Для менее известных кислот, содержащих кислотообразующие элементы в переменных степенях окисления, обычно применяются систематические названия.

В систематических названиях кислот к корню латинского названия кислотообразующего элемента добавляют суффикс -ат, а названия остальных элементов или их групп в анионе приобретают соединительную гласную -о. В скобках указывают степень окисления кислотообразующего элемента, если она имеет целочисленное значение. В противном случае в название включают и число атомов водорода. Например (в скобках традиционные названия):

HClO4 — тетраоксохлорат(VII) водорода (хлорная кислота) HClO3 — триоксохлорат(V) водорода (хлорноватая кислота) HClO2 — диоксохлорат(III) водорода (хлористая кислота) HClO — оксохлорат(I) водорода (хлорноватистая кислота) H2Cr2O7 — гептаоксодихромат(VI) диводорода (дихромовая кислота) H2S4O6 — гексаоксотетрасульфат диводорода (тетратионовая кислота) Н2В4О6 — гексаоксотетраборат диводорода (тетраметаборная кислота) HAuCl4 — тетрахлороаурат(III) водорода (золотохлористоводородная кислота) H — гексагидроксостибат(V) водорода

Ниже приведены корни латинских названий кислотообразующих элементов, не совпадающие с корнями русских названий тех же элементов: Ag — аргент(ат), As — арсен(ат), Аu — аур(ат), Cu — купр(ат), Fe — ферр(ат), Hg — меркур(ат), Pb — плюмб(ат), Sb — стиб(ат), Si — силик(ат), Sn — станн(ат), S — сульф(ат).

В формулах тиокислот, образованных из оксикислот замещением атомов кислорода на атомы серы, последние помещают в конце: H3PO3S — тиофосфорная кислота, H2SO3S — тиосерная кислота.

Общие методы получения кислот

Существует множество методов получения кислот, в т. ч. общих, среди которых в промышленной и лабораторной практике можно выделить следующие:

  • Взаимодействие кислотных оксидов (ангидридов) с водой, например:

P 2 O 5 + 3 H 2 O → 2 H 3 P O 4 {\displaystyle {\mathsf {P_{2}O_{5}+3H_{2}O\rightarrow 2H_{3}PO_{4}}}} 2 C r O 3 + H 2 O → H 2 C r 2 O 7 {\displaystyle {\mathsf {2CrO_{3}+H_{2}O\rightarrow H_{2}Cr_{2}O_{7}}}}

  • Вытеснение более летучей кислоты из её соли менее летучей кислотой, например:

C a F 2 + H 2 S O 4 → C a S O 4 + 2 H F {\displaystyle {\mathsf {CaF_{2}+H_{2}SO_{4}\rightarrow CaSO_{4}+2HF\uparrow }}} K N O 3 + H 2 S O 4 → K H S O 4 + H N O 3 {\displaystyle {\mathsf {KNO_{3}+H_{2}SO_{4}\rightarrow KHSO_{4}+HNO_{3}\uparrow }}}

  • Гидролиз галогенидов или солей, например:

P C l 5 + 4 H 2 O → H 3 P O 4 + 5 H C l {\displaystyle {\mathsf {PCl_{5}+4H_{2}O\rightarrow H_{3}PO_{4}+5HCl}}} A l 2 S e 3 + 6 H 2 O → 2 A l ( O H ) 3 + 3 H 2 S e {\displaystyle {\mathsf {Al_{2}Se_{3}+6H_{2}O\rightarrow 2Al(OH)_{3}+3H_{2}Se}}}

  • Синтез бескислородных кислот из простых веществ

H 2 + C l 2 → 2 H C l {\displaystyle {\mathsf {H_{2}+Cl_{2}\rightarrow 2HCl}}}

  • Реакции ионного обмена на поверхности ионообменных смол: хемосорбция катионов растворенных солей и замена их на Н+.

Минеральные кислоты широко применяют в металло- и деревообработке, текстильной, лакокрасочной, нефтегазовой и других отраслях промышленности и в научных исследованиях. К числу веществ, производимых в наибольшем объёме, относятся серная, азотная, фосфорная, соляная кислоты. Суммарное годовое производство в мире этих кислот исчисляется сотнями миллионов тонн в год.

В металлообработке они часто используются для травления железа и стали и в качестве очищающих агентов перед сваркой, металлизацией, окраской или гальванической обработкой.

Серная кислота, метко названная Д. И. Менделеевым «хлебом промышленности», применяется в производстве минеральных удобрений, для получения других минеральных кислот и солей, в производстве химических волокон, красителей, дымообразующих и взрывчатых веществ, в нефтяной, металлообрабатывающей, текстильной, кожевенной, пищевой и др. отраслях промышленности, в промышленном органическом синтезе и т. п.

Соляная кислота применяется для кислотной обработки, очищения руд олова и тантала, для производства патоки из крахмала, для удаления накипи с котлов и теплообменного оборудования ТЭЦ. Она также используется в качестве дубильного вещества в кожевенной промышленности.

Азотная кислота применяется при получении аммонийной селитры, использующейся в качестве удобрения и в производстве взрывчатых веществ. Кроме того, она применяется в процессах органического синтеза, в металлургии, при флотации руды и для переработки отработанного ядерного топлива.

Ортофосфорную кислоту широко используют при производстве минеральных удобрений. Она используется при пайке в качестве флюса (по окисленой меди, по чёрному металлу, по нержавеющей стали). Входит в состав ингибиторов коррозии. Также применяется в составе фреонов в промышленных морозильных установках как связующее вещество.

Пероксокислоты, кислородсодержащие кислоты хлора, марганца, хрома находят применение как сильные окислители.

  1. Некрасов Б. В., Основы общей химии, 3 изд., т. 1—2. М., 1973;
  2. Кемпбел Дж., Современная общая химия, пер. с англ., т. 1—3, М., 1975;
  3. Белл Р., Протон в химии, пер. с англ., М., 1977;
  4. Хьюн Д., Неорганическая химия, пер. с англ., М., 1987.

> См. также

  • Кислота
  • Царская водка

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *