Сталь для котлов марка

МАТЕРИАЛ ДЛЯ КОТЛОВ

Как было указано ранее, паровые котлы с давлением до 0,7 атм и водогрейные с температурой нагреваемой воды до 115° могут изготовляться из чугуна или стали любых марок. Правила, выпускаемые Государственной инспекцией по котлонадзору Министерства электростанций СССР и обязательные для всех министерств и ведомств, исключают из рассмотрения эти котлы. Однако с целью обеспечения долговечности котлов и безаварийности их работы нужно и в отношении изготовления этой группы котлов выставить какие-то, хотя бы минимальные, требования.

Котлонадзором Министерства коммунального хозяйства РСФСР изданы правила, относящиеся к паровым котлам с давлением до 0,7 ати и водогрейным при нагревании воды до 115°.

К материалам, расходуемым для изготовления котлов низкого давления, предъявляются следующие требования.

Чугун может применяться не ниже марок СЧ 15-32.

Рабочее давление котла допускается равным половине пробного гидравлического давления, на которое он испытывается при выпуске с завода. Последнее должно находиться в пределах 6— 10 ати для водогрейных котлов и 3 ати— для паровых.

Для изготовления стальных котлов может применяться углеродистая сталь любых марок.

Для частей котла, находящихся в пределах топки, например, для жаровых труб, требуется углеродистая сталь по качеству не ниже марок МСт. 2 и МСт. 3.

Трубы, являющиеся поверхностями нагрева котлов, допускаются только цельнотянутые.

При постановке труб на сварке без применения вальцовки допускаются трубы, сваренные внахлестку.

К выполнению сварочных работ допускаются сварщики, прошедшие испытания и допущенные к ответственным сварочным работам. Расчетный предел прочности металла принимается равным минимальной величине предела прочности для стали принятой марки. Если отсутствуют сведения о марке стали или ее механических свойствах, то расчетный предел прочности на разрыв принимается равным 32 кг/мм2.

Пробное гидравлическое давление для стальных паровых котлов — 3 атм, для стальных водогрейных — рабочее давление плюс 3 атм, но не менее 6 атм.

При изготовлении котла при помощи клепки накладки швов и заклепки должны быть примерно такого же качества, что и основной листовой материал.

Выбирая тот или иной тип шва и зная, какое последний дает ослабление листа, конструктор совершенно точно, базируясь на величинах временного сопротивления на разрыв и задаваясь соответствующим коэффициентом надежности, может рассчитать котел. В дальнейшем плотность выполненных заклепочных соединений проверяется гидравлической пробой.

Несколько сложнее получить гарантии в запасе прочности при изготовлении котлов при помощи сварки. Сварочный шов в отличие от шва клепаного состоит не только из материала прокатанного (получившего на отрезанных от листов образцах характеристику своего качества), но и из материала литого, причем самое литье производится сварщиком в процессе изготовления шва. Качество этого литого материала сильно зависит от исходного электродного металла (обычно применяется электродуговая сварка), от умения и добросовестности сварщика, от электрооборудования и т. п. Проверить качество, таким образом, наплавленного литого металла весьма затруднительно, так как даже при частичном разрушении шва, вырезая соответствующие пробы, не будет гарантии, что рядом расположенный шов имеет такие же качественные показатели. Получить же высококачественный сварной шов представляет существенный интерес. Конструкция шва по 244 при качестве литого материала, не выходящем из пределов, допускаемых для основного листового материала, позволяет довести степень ослабления, вносимого швом, до единицы и, таким образом, получить максимальную экономию металла. Стенки барабана при этом будут напряжены одинаково как в пределах шва, так и в целом месте. В котле с клепаными швами толщина стенки берется, исходя из напряжений металла в продольном шве, ослабленном заклепочными отверстиями, и поэтому напряжения в целом месте всегда несколько снижены, вследствие чего перерасходуется материал.

В настоящее время проработаны правила по применению сварки при изготовлении паровых котлов с давлением выше 0,7 ати, Согласно этим правилам электродная проволока и наплавленный металл (то и другое в отдельности) должны быть подвергнуты испытаниям на разрыв и относительное удлинение, а также на ударную вязкость.

Временное сопротивление на разрыв в образцах наплавленного металла должно быть не менее нижнего предела на разрыв для основного металла (свариваемых листов), относительное удлинение— не менее 18%. При испытании на ударную вязкость последняя должна быть не менее 8 кгм/см2.

Подобные требования, предъявляемые к сварному шву, позволяют при расчете сварных изделий принимать для стыковых швов типа, показанного на 244, коэффициент ослабления шва равным ср =0,95.

Высокие качества сварного шва могут быть достигнуты только при правильной организации технологического процесса изготовления сварного котла на заводе с наличием штата высококвалифицированных сварщиков, при пользовании электродами с особой толстой обмазкой, предохраняющей литой металл от вредного воздействия воздуха.

Проверить качество сварного шва в выполненном изделии затруднительно. Наиболее опасным пороком является непровар — пустоты, скрытые внутри шва. Чтобы гарантировать полную надежность шва в таком ответственном сооружении, каким является паровой котел, предусматривается просвечивание части швов при помощи рентгеноаппарата или лучами радиоактивных веществ.

Металл паровых котлов

Паровые котлы ТЭС

Основными материалами для котлостроения служат углеродистые, а также легированные стали, в состав которых включены хром, никель, молибден, вольфрам, ванадий и др. Большинство легирующих элементов отно­сится к дорогим материалам, однако введение их в со­став стали сообщает ей ряд ценных свойств, недостижи­мых для углеродистой стали.

Углеродистая (нелегированная) сталь применяется для «изготовления элементов парового котла, которые работают в условиях отсутствия ползучести, т. е. при температуре не выше 450°С. По условиям технологии сварки, являющейся основным технологическим процес­сом при изготовлении паровых котлов, многие ответст­венные элементы изготовляются из малоуглеродистых сталей марок 10 и 20. Сталь 20 является преобладаю­щей, поскольку по прочности она превосходит сталь 10, а по свариваемости и коррозионной стойкости не усту­пает ей. Основа микроструктуры металла труб — феррит, мягкая и пластичная составляющая; количество упроч­няющей составляющей — перлита — невелико. Листовая сталь имеет повышенное содержание углерода, в сред­нем от 0,15% (сталь 15К) до 0,25% (сталь 22К), что повышает показатели ее прочности: свариваемость этой стали вполне удовлетворительная. Сталь марки 22К отличается повышенной прочностью, что определяется несколько более высоким содержанием марганца и при­сутствием небольшого количества титана,

Низколегированная сталь перлитного класса. Низко­легированной является сталь, содержащая ие больше 4—5% легирующих элементов.,Такие стали применяются для изготовления элементов котлов, работающих вдело — виях ползучесхи: трубы и коллекторы пароперегревате­лей, паропроводы. Они применяются также для изготов­ления барабанов котлов на давление 18—38,5 МПа.

Низколегированные стали, устойчивые против ползу­чести при температуре до 580°С, когда не требуется очень высокая стойкость против окалинообразования, называются теплоустойчивыми, реже теплостойкими. Стали, устойчивые против ползучести при температуре выше 580°С и одновременно хорошо сопротивляющиеся окислению, при этих температурах называются жаро­прочными. Жаропрочность — высшее свойство стали, пе­рекрывающее теплоустойчивость.

Основными легирующими добавками являются Мо, Cr, Si, Д1. Растворяясь в феррите, молибден повышает его длительную прочность и сопротивление ползучести. Хром, а также кремний и алюминий повышают окали- ностойкость потому, что при контакте с кислородом они образуют соответственно Сг2р3, БЮг и АЬОз, очень ту­гоплавкие, плотные и близкие по коэффициенту тепло­вого расширения к стали. Такие соединения хорошо за­щищают сталь от окисления.

Широкое применение получили низколегированная хромомолибденовая сталь перлитного класса 15ХМ (1% Сг и 0,5% Мо), молибденохромовая сталь 12МХ (0,5% Сг и 0,5% Мо). Эти стали, особенно 15ХМ, отли­чаются хорошей свариваемостью, повышенным сопротив­лением ползучести и малой склонностью к графити — зации.

Стремление к дальнейшему повышению температу­ры перегретого пара при использовании недорогих низ­колегированных сталей перлитного класса привело к до­полнительному легированию хромомолибденовой стали ванадием в количестве 0,2—0,3%. Ванадий как сильный карбидообразователь способствует повышению предела ползучести.

В настоящее время широко применяют хромомолиб — деновую сталь 12Х1МФ (1% Сг. 0,3% Мо, 0,2% V) и более стойкую против ползучести сталь 15Х1МФ с не­сколько повышенным содержанием углерода и значи­тельно повышенным содержанием молибдена (1% Сг, 1% Мо, 0,2% V). Незначительная добавка ванадия уменьшает скорости ползучести. Эти стали предназначе­ны для работы при температуре до 565—570°С.

Наиболее окалиностойка и жаропрочна сталь пер­литного класса марки 12Х2МФСР, содержащая для ока — линостойкости 2% Сг и 0,4—0,7% Si. Присадка очень незначительного количества бора (0,003—0,005%) повы­шает жаропрочность. Эта сталь, из которой изготовляют главным образом трубы пароперегревателя, очень чув­ствительна к режиму термической обработки.

Высоколегированная сталь аустенитного класса. Стремление к повышению температуры перегретого пара до 600—650°С потребовало применения еще более жа­ропрочных и окалиностойких сталей. Структурной осно­вой таких сталей служит высоколегированный хромони — келевый или хромоникелемарганцевый аустенит. Высокое содержание хрома в аустенитных сталях делает их вы- сокоокалиностойкими. В отличие от низколегированной стали в высоколегированной аустенитной стали добавка только никеля и хрома достигает 30% и более общей массы металла, однако стоимость ее в несколько раз выше. Титан и ниобий — элементы-стабилизаторы при­бавляют к аустенитной стали для предотвращения интер- кристаллитной коррозии Будучи сильными карбидообра — зователями, эти элементы связывают весь углерод в кар­биды, не давая тем самым образоваться карбидам хро­ма по границам зерен аустенита. Если же карбиды хрома образуются, то аустенит обедняется вблизи них хромом, и эти обедненные хромом участки теряют со­здаваемую высоким содержанием хрома коррозионную стойкость, что приводит к интеркристаллнтной кор­розии.

Для повышения способности к образованию чисто аустенитной структуры прибегают к повышению отно­шения содержания никеля к хрому. Из сталей с повы­шенным отношением Ni/Cr в первую очередь следует отметить сталь 12X18H12T, далее сталь Х14Н14В2М с вольфрамом и молибденом и сталь типа 16-13-3 (16% Сг, 13% № и 3% Мо). Молибден и вольфрам добавляют к аустенитной стали с целью дальнейшего повышения жаропрочности в связи с образованием в их структуре высокодисперсных прочных соединений Fe2Mo и Fe2W, существенно повышающих жаропрочность стали.

Высоколегированная сталь мартенситного и мартен — ситно-ферритного классов. К недостаткам аустенитной стали относится склонность к образованию трещин при совместном воздействии напряжений и коррозионной среды (коррозионное растрескивание) и образование кольцевых трещин в окслошовной зоне сварных соеди­нений вследствие резкого снижения пластичности неко­торых участков околошовной зоны при нагреве. Аусте — нитная сталь дорога из-за высокого содержания никеля. Стремление к снижению стоимости жаропрочной стали при одновременном устранении недостатков, присущих аустенитной стали, привело к разработке более дешевых безникелевых сталей на основе И—13% Сг с добавкой молибдена, вольфрама и ванадия для повышения жаро­прочности. При такой композиции легирующих элемен­тов структура этой стали представляет собой низко­углеродистый мартенсит или мартенсит с ферритом, чем н определяется название классов этой стали.

Низколегированная сталь, работающая в условиях отсутствия ползучести. В котлостроении широко приме­няют низколегированную сталь, работающаю при отно­сительно невысокой температуре, когда явление ползу­чести не проявляется. Цель применения такой стали, более прочной, чем углеродистая, — уменьшение толщи­ны стенки элементов и соответственно уменьшение за­траты металла. Для изготовления барабанов котлов вы­соких параметров, например, применяют марганцовони- келемолибденовую сталь марки 16ГНМА (1% Мп, 1,2% Ni, 0,5% Мо). Для трубопроводов питательного тракта СКД применяют марганцовокремниевую сталь марки 15 ГС (1,1% Мп, 0,8% Si).

В табл. 25.1 приведены основные характеристики сталей, применяемых для изготовления поверхностей нагрева паровых котлов, барабанов, коллекторов и тру­бопроводов.

В котлостроении широкое применение получил чу­гун: серый и окалиностойкий. Серый чугун (СЧ) имеет высокие литейные свойства. Из пего изготовляют гар­нитуру топочных устройств: лазы, лючки, взрывные кла­паны, арматуру для крепления и подвески обмуровки. Наибольшая температура применения 250—350°С. Ока­линостойкий чугун (ОЧ) легирован элементами, повы­шающими его жаростойкость (например, кремнием). Из него изготовляют дистанционные гребенки пароперегре­вателей, подвески для крепления труб и другие детали, работающие в зоне высоких температур.

Котловая сталь- что это?

Котловая сталь — это сталь для деталей котельных установок, работающих при повышенных температурах, в контакте с водяной и паровой средами. От котельной стали требуется удовлетворительная характеристика жаростойкости, прочность; устойчивость против окалина-образования, водяной и паровой коррозии и др.; стабильность свойств при данной температуре; устойчивость при повторных нагрузках; малая склонность к старению. При выборе марок котельной стали обычно учитывают условия, при которых должны работать соответствующие детали: температуру, напряжение, срок службы и допустимую деформацию за этот срок. В зависимости от условий эксплуатации в качестве котельной стали используются углеродистая сталь, низколегированная сталь, легированная сталь перлитного и аутентичного классов.
Листовой прокат, соответствующий ГОСТ 19281-89 изготавливается из углеродистой, низколегированной стали в горячекатаном и термически обработанном состоянии. Он пригоден для сварки и предназначен для изготовления деталей и частей котлов и сосудов, которые работают под давлением при комнатной, а также при повышенной и минусовой температуре. Сталь марки Ст3 именно так ее называет ГОСТ 380-2005 относится к углеродистым сталям обыкновенного качества. Сталь 09Г2С — ГОСТ 19281-89 — сталь повышенной прочности, конструкционная, низколегированная, для сварных конструкций.
Во — первых, сталь Ст3 склонна к хрупкому разрушению при низких температурах. Обыкновенное качество — значит много примесей — серы и фосфора — что негативно сказывается на свойствах данного металла.
Во — вторых, ничтожно маленькое содержание Марганца и Кремния так же проигрывает в разы стали 09Г2с, так как они способствуют удалению кислорода из металла, который является вредной примесью, ухудшающей качество продукта.
В — третьих, устойчивость свойств позволяет применять детали из марки стали 09Г2С в широком температурном диапазоне от -70 до 475˚С, без ограничения давления, чего нельзя сказать о стали Ст3, которая может работать исключительно при положительных температурах.
В — четвертых, сталь марки 09Г2С легко сваривается, позволяя изготавливать из листового металлопроката самые сложные конструкции, в чем безусловно проигрывает сталь Ст3.
Низколегированный стали, к которым как раз относится марка 09Г2С ГОСТ 19281-89, отлично переносит перепады температур, именно поэтому данные стали чаще всего применяют в производстве паровых котлов. Так же, к особенно востребованным отраслям, свою нишу в которых занял 09Г2С, являются вагоностроение, кораблестроение и самолетостроение. Листы используются для изготовления дровяных печей Grill-D. Купить печь Grill-D можно в нашем магазине.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *